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ABSTRACT
Application-level checkpointing has been one of the most
popular techniques to proactively deal with unexpected fail-
ures in supercomputers with hundreds of thousands of cores.
Unfortunately, this approach results in heavy I/O load and
often causes I/O bottlenecks in production runs. In this pa-
per, we examine a new thread-based application-level check-
pointing for a massively parallel electromagnetic solver sys-
tem on the IBM Blue Gene/P at Argonne National Lab-
oratory and the Cray XK6 at Oak Ridge National Labo-
ratory. We discuss an I/O-thread based, application-level,
two-phase I/O approach, called “threaded reduced-blocking
I/O” (threaded rbIO), and compare it with a regular version
of“reduced-blocking I/O”(rbIO) and a tunedMPI-IO collec-
tive approach (coIO). Our study shows that threaded rbIO
can overlap the I/O latency with computation and achieve
near-asynchronous checkpoint with an application-perceived
I/O performance of over 70 GB/s (raw of 15 GB/s) and 50
GB/s (raw I/O bandwidth of 17 GB/s) on up to 32K pro-
cessors of Intrepid and Jaguar, respectively. Compared with
rbIO and coIO, the threading approach greatly improves the
production performance of NekCEM on Blue Gene/P and
Cray XK6 machines by significantly reducing the total sim-
ulation time from checkpoint blocking reduction. We also
discuss the potential strength of this approach with the Scal-
able Checkpoint Restart library and on other full-featured
operating systems such as the upcoming Blue Gene/Q.
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1. INTRODUCTION
As current leadership-class computing systems such as the
IBM Blue Gene series [18] and Cray XK6 move closer to ex-
ascale capability, the number of processors increases to hun-
dreds of thousands, and the failure probability rises corre-
spondingly [8]. Already, the fidelity of scientific simulations
running on these systems has reached an unprecedented
level, and a large amount of checkpoint data is being gen-
erated for fault tolerance or postprocessing purposes. The
gap between computing capability and the back-end storage
system on these systems is enlarging, not only because tech-
nology advances in storage media (e.g., HDD) have not kept
up with CPU advances, but also because of the complexity
of the parallel I/O software stack between parallel applica-
tions and the storage media. The even higher concurrency
expected in the exascale era will worsen this problem. Thus,
development of scalable I/O approaches is crucial in order
to help users better utilize the computing cycles allocated
on massively parallel systems and achieve more productive
science per compute cycle.

One of the current trends on the newest supercomputer
hardware is that they share a high degree of resources, in-
cluding memory and caches within nodes, network infras-
tructure between nodes, and a shared storage I/O system
for the whole machine. For example, the Blue Gene/Q will
feature the 64-bit PowerPC A2 with 16 cores and 4-way
hyperthreading. In these many-core systems, simultaneous
multithreading will likely be fully supported, and a poten-
tial performance boost can be achieved by exploiting those
large nodes with a hybrid model (MPI + Pthread, e.g.).

The key contribution of this paper is a performance study
of different parallel I/O approaches applied to application-
level checkpointing for the production petascale electromag-
netics solver NekCEM (Nekton for Computational Electro-
Magnetics) [1] on both the Blue Gene/P and Cray XK6. In
particular, we compare the application-level, two-phase re-
duced blocking I/O (rbIO) that uses an I/O thread (POSIX
thread), with the regular rbIO and a well-tuned MPI-IO
collective I/O approach (coIO). We demonstrate the per-
formance advantage of threaded rbIO and analyze the I/O



speedup as well as application production speedup compared
with collective I/O. We show that by using threaded rbIO,
application users will see a near-asynchronous checkpiont
with minimal overhead and considerable reductin in appli-
cation production time at large scale.

This paper is organized as follows. In Section 2, we introduce
the petascale application code NekCEM, used in our study.
In Section 3, we discuss several parallel I/O approaches. In
Section 4, we describe the Blue Gene/P and Cray XK6 sys-
tem and analyze detailed experiment results from different
approaches. In Section 5, we compare our approaches with
related work in the literature. In Section 6, we give our
conclusions and discuss some future work.

2. SOFTWARE AND I/O FILE FORMAT
NekCEM [1] is an Argonne-developed computational elec-
tromagnetics code based on a spectral-element discontinu-
ous Galerkin discretization with explicit schemes for time-
marching [6, 24]. It features body-fitting, curvilinear hexa-
hedral elements that avoid stairstepping phenomena of tra-
ditional finite-difference time-domain methods [34] and yield
minimal numerical dispersion because of the exponentially
convergent high-order bases [16]. Tensor product bases of
the one-dimensional Lagrange interpolation polynomials us-
ing the Gauss-Lobatto-Legendre grid points result in a diag-
onal mass matrix with no additional cost for mass matrix in-
version, which makes the code highly efficient. The stiffness
matrix is also a tensor product form of the one-dimensional
differentiation matrix. The hexahedral elements allow effi-
cient operator evaluation with memory access costs scaling
as O(n) and work scaling as O(nN), where n = E(N+1)3 is
the total number of grid points, E is the number of elements,
and N is the polynomial approximation order [9].

NekCEM uses the Message-Passing Interface (MPI) pro-
gramming model [12, 11] for communication and the single
program, multidata model [15] so that each processor inde-
pendently executes a copy of the same program on distinct
subsets of data. The discontinuous Galerkin approach based
on domain decomposition requires communication only at
the element faces (excluding the information of vertices and
edges) between neighboring elements through a numerical
flux [17]. The face values at the interfaces are saved in
a single array for the six components of the electric field
E=(Ex, Ey, Ez) and the magnetic fieldH=(Hx,Hy,Hz), for
only one time communication at each time step between
neighboring elements. This approach can reduce communi-
cation latency by a factor of 6, rather than saving the face
values into six different arrays for each component of the
fields.

NekCEM includes three tasks that are performed consecu-
tively at run time: presetup, solver, and checkpointing. Pre-
setup routines initialize processors, set compile-time data
sizes, read run-time parameters and global mesh data from
input files, distribute mesh data to each processor, and as-
sign numbering for nodal points and coordinates for a ge-
ometry. Solver routines compute the spatial operator eval-
uation and time iterations. Checkpointing routines produce
output files for the global field data.

NekCEM has two input data files, providing the information

on global mesh data and global mapping for vertices includ-
ing processor distribution for each element. For simplicity,
data files are kept in global format so that users are not re-
quired to deal with mesh partition before compile/runs, with
easier management for many different mesh configurations.
Data files are read at the beginning, before the actual solver
runs. Since the read operation occurs only once during the
whole execution, our optimization focuses on the more fre-
quent write operations.

NekCEM uses the vtk legacy format for an output file [20],
where the master header includes the application name, file
type (binary or ASCII), application type, gridpoint coor-
dinates, cell numbering, and cell type. Every output file
has a master header followed by data blocks. The data block
contains the actual values of the field from NekCEM compu-
tation that are sorted mostly in the order of fields. In each
data block, there is a header recording metadata such as
data block size and field name. The master header typically
specifies metadata information such as application name,
version, local state list, and offset table.

In this paper, we apply optimal configurations of differ-
ent checkpointing techniques to NekCEM solver that has
been optimized on cache and register usage inside do-loops
for spatial operator calculation and use of assembly-coded
dgemm routines designed for small matrices. Currently, the
weak scalability of the solver on the IBM Blue Gene/P In-
trepid at Argonne Leadership Computing Facility (ALCF)
is high, demonstrating ∼96% parallel efficiency with 2,132,
grid points per processor (total number of grid points n= 69,
139, and 279 million on the number of processors np = 32K,
65K, and 131K, respectively). The weak scaling results for
the Cray XK6 Jaguar at Oak Ridge Leadership Computing
Facility (OLCF), are not as consistently flat as for Intrepid.
Jaguar has a higher latency and faster clock, implying that
the relative latency is about three times higher than on In-
trepid. In addition, Jaguar has significant system noise that
impairs the repeatability of timing tests. For example, the
60% efficiency observed for np = 131,072 processors, while
not terrible, is also pessimistically low given that the effi-
ciency is up to 96% at a different time of run.

Good scaling of NekCEM [25] with a low number of points
per processor indicates that the code can be readily extended
to future extreme-scale computing resources. For example,
if one requires 10,000 points per core, then a 1-billion-point
computation can effectively use at most 100,000 cores. In
contrast, if one is able to efficiently use just 1,000 points
per core, a million cores can be effectively used for the same
problem, solving it in one-tenth the time, thus reducing op-
portunity costs. Our NekCEM scaling results that such a
scenario is realistic.

3. PARALLEL I/O APPROACHES
In this paper, we discuss optimal configurations of three dif-
ferent parallel I/O approches that are extended from our
previous works [13, 14]: collective I/O, reduced-blocking
I/O, and threaded reduced-blocking I/O. An architecture
diagram for each approach is given in Figure 1. On a fixed
number of processors (np), each approach specifies the num-
ber of group (ng) processors that access the file system and
the number of output files (nf ) generated by those writer



Figure 1: Architecture diagrams for different
I/O approaches: coIO (top), rbIO (middle), and
threaded rbIO (bottom).

processors.

Collective I/O (coIO) uses the MPI-IO library’s built-in col-
lective method to provide read/write operations to shared
file descriptors with strided data access. It is relatively easy
to implement and offers a few advantages over the tradi-

tional approach of 1 POSIX [19] file per process. In our im-
plementation, all processors call the collective I/O routine
to write data to a number of files. The number of output
files, typically nf=2m < np, m=0,1,2,..., is a user-tunable
parameter. If nf=1, all processors in MPI_COMM_WORLD use
the MPI_File_write_at_all_begin/end() to write all data
into one shared file. If nf>1, the processors are divided
evenly into nf (=ng) groups, and the np/nf processors in
each group (i.e., local MPI communicator) collectively write
to one file in parallel.

Reduced-blocking I/O (rbIO) divides a partition into appli-
cation compute nodes (called workers) and I/O aggregator
nodes (called writers). Thus np processors will be divided
into ng groups with one writer per group. When the solver
reaches a checkpoint phase, the workers send their data to
the dedicated writer in its group (the Data Aggregation ar-
row as indicated in Figure 1 (middle)) through the P2P net-
work of the system using MPI_Isend() and return. The writ-
ers aggregate the data, reorder data blocks, and write large
data blocks to disk using collective or noncollective functions
(depending on the number of files nf desired).

Threaded reduced-blocking I/O (thread rbIO) is similar to
regular rbIO except that the writers spawn a thread to do
the I/O write process in the background while the main
MPI thread goes to the computation for next timestep as
indicated in Figure 1 (bottom), instead of a blocking fash-
ion in the regular rbIO. In this approach, both workers and
writers can avoid waiting for disk I/O operations. Instead,
the workers send the data to their corresponding writer and
go to the next iteration computation. Meanwhile, the MPI
thread of the writers aggregates data to the memory buffer
and goes to the next iteration computation as well, in a rel-
atively fast manner, leaving the I/O daemon thread to fetch
the data from the buffer pool and scrabble the data to disk
in the background.

4. PERFORMANCE AND ANALYSIS
In this section, we describe experiment test cases and demon-
strate I/O performance of different I/O approaches that we
implemented in NekCEM. We carry out performance tests
using the GPFS [30] file system on the Blue Gene/P at
ALCF and the Lustre file system on the Cray XK6 at OLCF.

4.1 System Overview
Intrepid, the Blue Gene/P system at ALCF, has 40,960
quad-core compute nodes (a total of 163,840 cores) and 80
TB of memory, with a theoretical peak performance of 557
teraflops. A 3D torus network serves as the P2P network for
the compute nodes, with a bandwidth of 425 MB/s per direc-
tion [18]. In addition, a collective network connects compute
nodes and I/O nodes, and a Gigabit Ethernet delivers data
between I/O nodes and data storage servers. The BG/P
runs a special lightweight kernel on the compute nodes called
CNK (Compute Node Kernel). When a thread is created,
it is allocated to the core with fewest threads running on
that core. Since CNK does not support automatic thread
switching on a core on a timed basis, we use BG/P’s dual
mode (2 MPI tasks per node) to allow our extra thread as-
signed to a core not running MPI task. I/O nodes (IONs)
run a more full-featured kernel and act as a proxy between
the compute node and the storage nodes to execute system
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Figure 2: Write performance of different I/O ap-
proaches in NekCEM with GPFS on Intrepid, as
a function of processor number for the problem
sizes of (np, n, S) = (8K, 143M, 13GB), (16K, 275M,
26GB), and (32K, 550M, 52GB).

calls and provide better scalability for the whole system. An
ION and its compute nodes are referred to as a “pset.” On
Intrepid, each pset contains 1 ION and 64 compute nodes,
with a total 640 IONs across the system.

The file system under the BG/P is a GPFS [30] and a
PVFS [21] system, sharing 128 file servers that are connected
to 16 Data Direct Network (DDN) 9900 SAN storage arrays.
Each DDN exports the disk block as logical units, each di-
rectly connected to 8 file servers. A 10 Gigabit Ethernet
connects the file servers to the I/O nodes. The theoretical
peak bandwidth for read is 60 GB/s and that of write is 47
GB/s [21].

Jaguar, the Cray XK6 at OLCF, contains 18,688 compute
nodes with a theoretical peak performance of 2.63 petaflops.
Each compute node has an AMD Opteron “Interlagos” pro-
cessor, which has 8 dual-cores units clocked at 2.2 GHz,
and 32 GB of RAM. Each of the dual-core unit, called a
“module”, has two dedicated integer cores and two symmet-
rical 128-bit floating-point units that can be unified into
one large 256-bit-wide unit. A hardware module is between
a true dual-core that has two fully independent cores and
a single-core processor that has simultaneous multithread-
ing out of a single core. A Gemini high-speed intercon-
nect router is shared by two nodes, and nodes within the
compute partition are connected in a 3D torus. The sys-
tem has a total of 299,008 cores and 598 TB of memory.
Jaguar uses the Cray Linux environment, which consists of
a Compute Node Linux microkernel on compute nodes and
a full-featured Linux on login nodes.

The spider file system, Oak Ridge’s main production file sys-
tem, supports over 52,000 clients with 10 PB of disk space.
It is the largest-scale Lustre file system in the world, with a
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Figure 3: Compute and I/O time per checkpoint-
ing step for different I/O approaches in NekCEM
with GPFS on Intrepid, as a function of processor
number for the problem sizes of (np, n, S) = (8K,
143M, 13GB), (16K, 275M, 26GB), and (32K, 550M,
52GB). The checkpoint frequency is 1 per 100 com-
putation steps.

peak bandwidth of 120 GB/s. Lustre is an object-based file
system composed of three components: metadata servers,
object storage servers (OSS), and clients. Each OSS man-
ages one or more object storage targets (OSTs), and Spider
has a total of 672 OSTs.

We note that the file systems at ALCF are shared by In-
trepid, Eureka (a visualization system), and some other clus-
ters whose I/O workload may affect the I/O performance
observed on Intrepid. The Lustre file system at Oak Ridge
is also shared between Jaguar and other systems such as
Lens and Smoky, so the performance may vary by load from
activity on other systems. In addition, all our tests were
done under normal load, where there might be still system
noise due to the traffic on the network from other online
users.

4.2 Parallel I/O Performance for NekCEM
The test case is a 3D cylindrical waveguide simulation for
different sizes of meshes and different numbers of processors
with (E,np) = (35K, 8K), (68K, 16K), and (137K, 32K).
We used N = 15 so that the number of grid points per ele-
ment is fixed at 163. The total number of fields in the check-
point file is four. The output file sizes S per I/O step are
(n, S) = (143M, 13GB), (275M, 26GB), and (550M, 52GB)
on np = 8K, 16K, and 32K processors, respectively, with the
checkpoint frequency one per 100 computation steps.

We measure the bandwidth as the total amount of data
across all processors divided by the overall wall-clock time
(including open, write, and close files) of the slowest pro-
cessor to finish. The notion of perceived writing speed was
defined as the speed at which worker processors can transfer
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Figure 4: Write performance of different I/O ap-
proaches in NekCEM with Lustre on Jaguar, as
a function of processor number for the problem
sizes of (np, n, S) = (8K, 143M, 13GB), (16K, 275M,
26GB), and (32K, 550M, 52GB).

their data. This measure is calculated as the total amount
of data sent across all workers over the maximum time of
MPI_Isend() to complete. Most of these experiments were
run multiple times, and the data points were sampled from
the median number.

Figure 2 shows the write bandwidth of different approaches
as a function of the number of processors on Intrepid. Here,
the coIO with nf=1 is at the bottom of the graph, show-
ing the least bandwidth achieved compared with other ap-
proaches, because of the overhead of requiring all processors
to communicate and synchronize during the collective write
routine. The coIO approach with np:nf = 64:1, where each
collective write involves only 64 processors (with less com-
munication and metadata operation overhead) and overall
produces np/64 files, achieves significantly better perfor-
mance until a plummet at 32K processors, possibly due to
noisy outliers in the partition [14]. By comparison, rbIO
with np:nf = 64:1 provides decent raw performance in a
more consistent manner. Moreover, because of BG/P’s fast
torus network, the workers can send their data block to
corresponding writers in the group with MPI_Isend() (plus
some other minor overhead) and go to the next iteration
computation without any I/O blocking, thus achieving per-
ceived speed bandwidth as high as 70 GB/s. At the same
time, the I/O daemon thread can also achieve comparable
raw bandwidth with regular rbIO and coIO and is able to
finish the data-to-disk process before the next checkpoint
phase arrives again.

Figure 3 shows the compute and I/O time per checkpoint
step for different I/O strategies with NekCEM on Intrepid
from 8K to 32K processors. The processor-to-file-count ra-
tio (np:nf ) for grouped coIO and rbIO was fixed at 64:1
because our previous study showed this to be a good prac-
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Figure 5: Compute and I/O time per checkpoint-
ing step for different I/O approaches in NekCEM
with Lustre on Jaguar, as a function of processor
number for the problem sizes of (np, n, S) = (8K,
143M, 13GB), (16K, 275M, 26GB), and (32K, 550M,
52GB). The checkpoint frequency is 1 checkpoint
per 100 computation steps.

tice [14]. As one can see from this figure, the compute time
(for every 100 steps) is stable across different approaches
from 8K processors to 32K processors. This stability is due
to the excellent weak scaling property of NekCEM as de-
scribed in Section 2. However, the I/O time varies widely
depending on the approach. The coIO approach with nf=1
spends more than 30 seconds (not fully shown in the figure)
to finish 1 checkpoint, while the threaded rbIO approach
spends less than 1 second. For threaded rbIO, since our
compute thread and I/O thread run on different physical
cores in the BG/P dual mode, the compute time was not
affected by the I/O thread’s activity. Since the I/O thread
can achieve raw bandwidth similar to that of regular rbIO
and coIO, the significant time difference of raw bandwidth
and compute time ensures that there is little chance the
I/O thread is still processing data when the next check-
point arrives (this point is discussed further in the next sec-
tion). Overall, threaded rbIO spends the least time on each
compute+checkpoint phase and shows nearly perfect weak
scaling from 8K processors to 32K processors on the Blue
Gene/P.

Figure 4 shows the write bandwidth of different approaches
as a function of the number of processors on Jaguar. Here
the coIO with nf=1 still achieve least bandwidth among
others. The coIO with np:nf = 64:1 comes with consis-
tently increasing bandwidth from 8K to 32K processors,
topping at around 7 GB/s. On Jaguar, the coIO performs
slightly worse than the rbIO, due to lack of collective buffer-
ing [36] and data block alignment optimizations [22] seen in
ROMIO [35] implementation on the Blue Gene/P. The regu-
lar rbIO and threaded rbIO provide consistent performance
at all scales, with over 17 GB/s raw performance at 16K
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processors. Here, the threaded rbIO has a decent perfor-
mance advantage over regular rbIO due to the separation of
data sending and data committing phases that benefit the
computing of pure bandwidth. In addition, the perceived
speed from threaded rbIO is consistently increasing from 40
GB/s to over 50 GB/s from 8K to 32K processors.

Figure 5 shows the compute and I/O time for different I/O
strategies on Jaguar from 8K to 32K processors. The y-
axis range is the same as in Figure 3. The coIO approach
with nf=1 performs worse than on BG/P (132 seconds for
1 checkpoint at 32K processors) because of a less-optimized
implementation of the MPI-IO library. The regular rbIO
finishes slightly faster than coIO at all scales. The threaded
rbIO spends much less time on I/O than do the other ap-
proaches. However, because of the overhead of the thread
switch on a core, the compute time for rbIO is slightly longer
as well, as the higher bar for compute time on threaded rbIO
indicates in Figure 5.

In Figure 6 we take a closer look at the compute distribution
of threaded rbIO and nonthreaded rbIO at 16K processors
on Jaguar. Because of the overhead from context switch of
the MPI task and I/O thread, the MPI task on the writer
processor lags behind a little and arrives at the synchro-
nization point late for each computation step, thus slowing
overall computation. The gap is about 0.5 second at all
scales, which is much smaller than with threaded rbIO or
other I/O approaches (normally >5 seconds).

4.3 Speedup Analysis
Previously we analyzed the theoretical speedup of time spent
on I/O between rbIO and coIO [14]. Here we analyze the
I/O speedup of threaded rbIO (denoted trbIO) over coIO by

computing the overall time the application spends on I/O:

Speedupio =
TcoIO

TtrbIO
. (1)

The total time of all processors blocked by I/O operations,
TcoIO and TtrbIO, can be defined by

TcoIO = np
S

BWcoIO
, (2)

TtrbIO = np
S

BWp
, (3)

where BWcoIO and BWp represent the bandwidths of coIO
and perceived speed of threaded rbIO, respectively, and S is
the file size. This leads to

Speedupio =
BWp

BWcoIO
. (4)

On Jaguar, Speedupio is about 7–13× on different numbers
of processors from 8K to 32K.

Next, we analyze the application production speedup of threaded
rbIO with NekCEM versus coIO with NekCEM:

Speedupprod =
TcoIO + T coIO

comp

TtrbIO + T trbIO
comp

. (5)

Denoting the checkpoint frequency to be 1 checkpoint per
fcp computation steps, tcomp to be the time for single step
computation, and X to be the number of computation steps
that a checkpoint time equals to, one can express the pro-
duction time speedup as

Speedupprod =
XcoIO ∗ tcoIOcomp + fcp ∗ tcoIOcomp

XtrbIO ∗ ttrbIOcomp + fcp ∗ ttrbIOcomp

. (6)

Suppose δ is the overhead of a single step computation with
threaded rbIO compared with nonthreaded I/O (i.e., ttrbIOcomp

= (1 + δ) ∗ tcoIOcomp). Then we have

Speedupprod =
XcoIO + fcp
XtrbIO + fcp

∗
1

1 + δ
. (7)

In our case on 32K processors of Jaguar, XcoIO is about
70× (of time for a single computation step), and XtrbIO is
about 10×. Our fcp has been 100, and δ is roughly 5%.
Overall, then, the application speedup is roughly 50% on
32K processors of Jaguar.

One of the assumptions we are making here is that the total
computation time T trbIO

comp is always larger than or equal to the
actual I/O time by adjusting the checkpoint frequency prop-
erly; otherwise the main computation task will be held till
I/O thread finishes, a costly approach. On the other hand,
given that threaded rbIO provides raw I/O bandwidth com-
parable to or even better than other approaches provide, if
the application is generating more data than the I/O sub-
system can take, threaded rbIO is still doing the best that
can be done by hiding all the I/O latency possible.

If we adjust the checkpoint frequency higher (i.e., the fcp be-
comes smaller), the speedup becomes more significant. The
same applies if we increase the bandwidth of perceived speed
by further reducing some overhead, or if we reduce the over-
head of computation δ caused by the I/O thread on the same
core.



5. RELATED WORK
Our previous work showed performance analysis for rbIO
and coIO on Blue Gene/L and Blue Gene/P and parameter
tuning practices [13, 14]. We demonstrated performance
advantage of coIO and rbIO over traditional 1 POSIX file
per processor approach and analyzed potential benefit of
using rbIO on some platforms.

Seelam et al. [33, 31, 32] implement an application-level
I/O caching system on the Blue Gene by analyzing I/O
access pattern, prefetching requests and aggregating write-
back data to storage. They use extra Pthreads to handle
writing but it blocks the entire application thread when do-
ing prefetching. They run several I/O benchmarks and re-
port a 10% improvement on WRF execution time.

The I/O delegate and caching system (IODC) that is devel-
oped by Nisar et al. [7, 28, 29] uses a small percentage of
compute nodes as dedicated delegates/aggregators to main-
tain a good file to I/O servers mapping and mitigate file
block contention issues from independent I/O requests. This
is implemented under MPI-IO layer and tested with appli-
cation I/O kernels on up to 8K processors of a Cray XT4
system and other clusters. Our approaches introduced in
this paper is implemented in user space and does not main-
tain an explicit mapping between aggregators and I/O file
servers.

ADIOS by Lofstead et al. [23] is a portable metadata-rish
I/O architecture that uses a set of lightweight, high-level
API to tune applications for domain scientists with minimal
effort and write data into a custom BP format to be con-
verted back to scientific library like HDF5. ADIOS provides
ease for generic application programmers while our work fo-
cuses on optimized performance for our application with the
“bursty” I/O pattern.

Fahey et al. [10] performed I/O subsetting experiments on
the Cray XT4 with four I/O approaches (MPI I/O, agg, ser,
and swp) on up to 12K processors, and about 40% of peak
write bandwidth was achieved. Lang et al. [21] used I/O
benchmarks (BTIO, MADbench2, etc.) on the Blue Gene/P
with up to 131K processors and reported I/O bandwidths
of nearly 60 GB/s (read) and 47 GB/s (write) on PVFS.
Borrill et al. [4, 5] used the MADbench2 benchmark on dif-
ferent systems (Lustre on Cray and GPFS on Blue Gene/L)
to explore parameters such as concurrency, I/O library and
output file number on up to 1K processors.

Pfeiffer et al. [2] use the MPI + Pthread hybrid model on
RAxML phylogenetics code for production runs on SDSC
clusters and conclude that hybrid code provide a 6× speedup
compared to Pthreads-only code if tuned properly.

The Scalable Checkpoint Restart (SCR) library by Moody et
al. [26] provides a multi-level checkpointing capability that
can leverage local node storage in the form of RAM disk or
SSD. They used pF3D benchmark on up to 8K cores and
achieved a checkpoint speedup of 14× to 234× compared
to a regular parallel file system. Our approach does not
require special hardware support and uses user space RAM
for data buffering. In the future, this gap may blur as the
future supercomputer comes with a more full-featured OS

that supports different hardware.

6. CONCLUSIONS AND FUTUREWORK
Our previous study [14] shows the benefit of using a tuned
collective IO and user-level aggregation approach rbIO with
a data-intensive scientifici application on Blue Gene/P. In
this paper, we use rbIO with a separate I/O daemon thread
so that the I/O work can be done asynchronously while the
main computation tasks keep going into next iteration com-
putation without being blocked by time-consuming disk I/O
operations. From the application’s perspective, it never sees
any I/O in its way other than sending its data over to the
aggregator, which can be done at a speed of more than 50
GB/s on a 32k processor partition on Jaguar with an ac-
tual raw bandwidth of 13 GB/s, which still prevails among
other approaches. This approach is straight-forward to im-
plement and works very well on Blue Gene/P and Cray XK6
machines, providing roughly 10× I/O improvement and 50%
overall production time improvement over well-tuned MPI-
IO collective approaches. In the fure, we plan to investigate
into worker’s computation overhead (δ) in threaded rbIO
and test our approaches at larger scale.

Threaded rbIO uses extra user space RAM in compute node
as buffer to absorb bursty I/O request from applications.
This works well on existing machines and will work on any
OS that has threading capability (including dual mode on
BG/P and more full-featured OS such as the Blue Gene/Q).
This principal coincides with design and simulation on future
systems with HDD/SSD hybrid storage system such as burst
buffer [27] in IOFSL [3].
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